Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases.
نویسندگان
چکیده
The developmental pathway of somatic embryogenesis in Norway spruce involves proliferation of proembryogenic masses (PEMs), PEM-to-somatic embryo transition and further development of the somatic embryos. It has previously been shown that extracellular signal molecules, including arabinogalactan proteins, lipo-chitooligosaccharides and chitinases, regulate somatic embryogenesis. The Chia4-Pa1 gene from Norway spruce is described here. The Chia4-Pa1 encodes a typical basic class IV chitinase, although the intron-exon organization of this gymnosperm chitinase is different from that in angiosperm class IV chitinases. The Chia4-Pa1 belongs to a small gene family with highly similar members, and the expression pattern of Chia4-Pa1 cannot be distinguished from that of other Chia4-Pa members. Upon withdrawal of plant growth regulators, i.e. during a treatment that stimulates PEM-to-somatic embryo transition and massive programmed cell death, a significant increase in transcription and translation of Chia4-Pa genes takes place. The expression pattern analysis revealed that Chia4-Pa genes are expressed in a subpopulation of proliferating cells and at the base of the somatic embryo. Furthermore, in seeds, Chia4-Pa genes are expressed in the megagametophyte in the single cell-layered zone surrounding the corrosion cavity. Taken together these results suggest that the Chia4-Pa expressing cells have a megagametophyte signalling function and that CHIA4-Pa stimulates programmed cell death and promotes PEM-to-somatic embryo transition.
منابع مشابه
Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce.
Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PE...
متن کاملEvolution of Genetic Mechanisms Regulating Reproductive Development in Plants
Sundström, J., 2001. Evolution of genetic mechanisms regulating reproductive development in plants. Characterisation of MADS-box genes active during cone development in Norway spruce. Acta Univ.Ups., Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 612. 44 pp. Uppsala. ISBN 91-554-4969-7. The reproductive organs of conifers and angiosperms differ in mo...
متن کاملMetabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies).
Progress on industrial-scale propagation of conifers by somatic embryogenesis has been hampered by the differences in developmental capabilities between cell lines, which are limiting the capture of genetic gains from breeding programs. In this study, we investigated the metabolic events occurring during somatic embryo development in Norway spruce to establish a better understanding of the fund...
متن کاملExpression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst).
Detailed expression analysis of the Norway spruce (Picea abies [L.] Karst) Viviparous 1 (Pavp1) and p34cdc2 (cdc2Pa) genes was carried out during somatic embryogenesis. Pavp1, a gene associated with embryo development, was expressed in proliferating embryogenic suspension cultures in the absence of exogenous ABA. When somatic embryo formation was promoting by blocking proliferation, Pavp1 expre...
متن کاملPolyamine profiles and biosynthesis in somatic embryo development and comparison of germinating somatic and zygotic embryos of Norway spruce.
The polyamine (PA) contents and activities of PA biosynthetic enzymes in Norway spruce somatic embryos [Picea abies L. (Karst.), genotype AFO 541] were studied in relation to anatomical changes during their development, from proliferation to germination, and changes in these variables associated with the germination of mature somatic and zygotic embryos were compared. Activities of PA biosynthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 393 شماره
صفحات -
تاریخ انتشار 2003